
Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

A robust approach to shear strength prediction of reinforced concrete deep beams using
ensemble learning with SHAP interpretability

This Accepted Manuscript (AM) is a PDF file of the manuscript accepted for publication after peer review, when applicable, but
does not reflect post-acceptance improvements, or any corrections. Use of this AM is subject to the publisher's embargo period
and AM terms of use. Under no circumstances may this AM be shared or distributed under a Creative Commons or other form of
open access license, nor may it be reformatted or enhanced, whether by the Author or third parties. By using this AM (for
example, by accessing or downloading) you agree to abide by Springer Nature's terms of use for AM versions of subscription
articles: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

The Version of Record (VOR) of this article, as published and maintained by the publisher, is available online at:
https://doi.org/10.1007/s00500-023-09495-w. The VOR is the version of the article after copy-editing and typesetting, and
connected to open research data, open protocols, and open code where available. Any supplementary information can be found on
the journal website, connected to the VOR.

For research integrity purposes it is best practice to cite the published Version of Record (VOR), where available (for example,
see ICMJE’s guidelines on overlapping publications). Where users do not have access to the VOR, any citation must clearly
indicate that the reference is to an Accepted Manuscript (AM) version.

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s00500-023-09495-w


Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

A Robust Approach to Shear Strength Prediction of Reinforced Concrete Deep
Beams using Ensemble Learning with SHAP Interpretability

Achyut Tiwaria,∗, Ashok Kumar Guptab, Tanmay Guptac

aDepartment of Computer Science & Engineering and Information Technology, Jaypee University of Information
Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India

bDepartment of Civil Engineering, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India
cDepartment of Civil Engineering, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India

Abstract

The behavior of reinforced concrete (RC) deep beams is complex and difficult to predict due to factors such as

compressive and shear stress and beam geometry. To address this challenge, researchers have proposed various ma-

chine learning models such as Artificial Neural Network, Decision Tree, Support Vector Machine, Adaptive Boosting,

Extreme Gradient Boosting, Random Forest, Gradient Boosting, and Voting Regressor. In this study, the authors eval-

uated the performance of these models in predicting shear strength of RC deep beams by using metrics such as R2,

Mean Squared Error, Root Mean Squared Error, Mean Absolute Percentage Error and Mean Absolute Error. Further-

more, the authors optimize the ensemble learning models using customized hyperparameters. The XGBoost model

exhibited the highest accuracy with an R2 value of 0.92 and the least model error, with MAE of 29.65 and RMSE

of 47.76 & MAPE of 9.79.The authors compared these models with mechanics-driven models from different country

codes including the United States, China, Europe, British (CIRIA), Canada and found that ensemble learning models,

specifically XGBoost, outperformed mechanics-driven models. The authors used an explainable machine learning

(EML) technique called SHapley Additive exPlanations (SHAP) to gain additional insights into the developed XG-

Boost model. The outcomes of feature selection and SHAP analysis suggest that the grade of concrete and beam

geometry predominantly influence the prediction of shear strength in RC deep beams, whereas steel properties exert

minimal impact in this regard.
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1. Introduction1

The exponential growth and advancements in computational sciences have brought new technologies such as2

artificial intelligence (AI) and machine learning (ML) [1, 2, 3]. In various fields of engineering As computational3

power has become more democratised and widely available for research purposes, new paradigms are evolving some4

of which are structural health monitoring, computer-aided design development, longevity of structures etc. [4, 5, 6, 7,5

8, 9, 10, 11]. These computational sciences have permeated various sectors of the economy, including the real estate6

industry. Modern structures focuses on various factors such as resilience, safety, sustainability, reliability, economy7

and aesthetics. Most fundamental building block of any infrastructure is reinforced concrete beams which is widely8

used in construction to support loads and distribute them to the columns or walls [12, 13]. The use of RC Deep Beams9

has increased exponentially since the start of building taller structures [14, 15]. However, these tall structures face10

various failures like tensile, bending, or shear failures, which can be prevented by embedding steel reinforcing bars in11

concrete beams [16]. Shear failure, caused by shear force combined with axial loads and moments, is one of the most12

dangerous failure types as it can occur without warning [17]. In contrast, flexural failure develops gradually due to13

the yielding of rebars [18]. The shear transmission process becomes random after shear fractures begin [17].14

Studies have shown that computational science plays a vital role in engineering, specifically in Civil Engineering.15

Ensemble learning, a computer science field, is widely used in various disciplines such as biology, engineering,16

and sociology [19, 20, 21, 22, 23]. Machine Learning (ML) is commonly used in building structural design and17

performance assessment, enhancing concrete properties predictions, and improving the finite element modeling of18

structures [24, 25, 26, 27, 28, 29]. Ensemble learning is a powerful ML technique that improves the accuracy of19

predictions made by a model [30, 19]. It is particularly useful for large datasets with many features, as it trains a20

group of models on different subsets of the data and combines their predictions to make a final prediction. This21

technique can be used to reduce variance in the model’s predictions [30].22

Predicting reinforced concrete beam shear strength is a complex problem due to the nature of the materials in-23

volved. Using ensemble learning can be beneficial in reducing variance in predictions made by the model [31]. The24

most common type of shear reinforcement in concrete beams is stirrups, which transfer shear forces between the25

concrete and steel. There are several ways to predict the shear strength of reinforced concrete beams, but empirical26

codes are the most common method. Every country has its own empirical codes to find shear strength. In the US,27

the American Concrete Institute (ACI) 318 code governs the design of reinforced concrete beams Committee [32].28

Similarly, in Europe, the use of Eurocode 2 Bethlehem [33] for designing concrete structures is prominent.29

This study aims to formulate and compare various boosting machine learning algorithms to predict the shear30

strength of Reinforced Concrete (RC) deep beams, which is a complex task due to uncertain factors. The study31
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explores ensemble learning methods like Adaptive Boosting, Extreme Gradient Boosting, Random Forest, Gradient32

Boosting, and Voting Regressor. In addition conventional ML algorithms including ANN, DT & SVM are also33

compared. The objective is to identify the most effective machine learning approach that outperforms traditional34

mechanics-driven models based on country codes, including the United States [32], China [34], Europe [33], British35

(CIRIA) [35], and Canada [36] by evaluating their performance using metrics like R2, MSE, RMSE, and MAE.36

This comparison aims to assess whether the machine learning-based approach, particularly the XGBoost model, can37

surpass the accuracy and performance of traditional mechanics-driven models in predicting the shear strength of RC38

deep beams across various regions.39

The study also incorporates the use of the explainable machine learning (EML) technique, SHapley Additive40

exPlanations (SHAP) [37], to gain interpretability and insights into the developed best-performing model. This step41

is crucial for understanding the factors that contribute to the predictions and enhancing transparency in the decision-42

making process. The authors have also performed feature selection analysis to understand how varied parameters43

affect the prediction of shear strength while using ML Models.44

In summary, the objectives of this study are to advance the understanding and prediction capabilities of RC deep45

beam shear strength through the application of state-of-the-art machine learning methods. By comparing these models46

against established mechanics-driven models, the study aims to provide engineers and researchers with a more accu-47

rate and reliable tool for designing and assessing the structural behaviour of RC deep beams, ultimately contributing48

to advancements in the field of civil engineering and construction.49

The simulation conducted uses Python language to code and build the relevant models on colab.research.google.com.50

For comparison and calculations of mechanics-driven models, Microsoft excel was used.51

The remainder of this paper will describe the literature review in Section 2, methodology of ML models in Section52

3, model structure, dataset collection, dataset limitation, model selection, model evaluation and hyper-parameter53

optimisation in Section 4 and comparison between conventional and ensemble models, comparison between ML54

models and mechanics driven models, SHAP of XGboost model, feature importance analysis in Section 5.55

2. Literature Review56

The use of artificial intelligence (AI) and machine learning (ML) techniques in structural engineering has been57

in play since the 1980s as the researchers realised the conventional approaches e.g., finite element models and ana-58

lytical models have difficulties in accurately and efficiently predicting the structural behaviours [1]. With the rapid59

development and democratisation of computer science, new paradigms came into play. As the computation power was60

widely available, more powerful algorithms were proposed which turned out to widen the scope of structural engineer-61
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ing. There are 3 major fields that showed significant progress i.e. Structural Health Monitoring (SHM), performance62

evaluation and modelling of mechanical properties [1].63

SHM uses machine learning as it collects huge amounts of data using various sensors and later processes these64

large amounts of collected data making data-driven models. In addition, unsupervised algorithms or clustering tech-65

niques can also be used [38, 39, 40].66

Performance evaluation is another major area that has improved with the implementation of ML. Conventional67

performance evaluation methods including fragility and reliability assessment require huge amounts of data in order to68

take into account the uncertainty and randomness in the structure. As seen in SHM, the data is collected using sensors69

which can even collect real-time data. Applying ML to formulate dynamic models in accordance with situational data70

results in low use of computation as seen in various studies [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].71

In the last two decades, there has been a prevalence of modelling the mechanical behavior of structures, while72

also exploring the diverse usage of concrete and its dynamic behaviors in various structures. Concrete has been73

widely employed in the construction of structures due to its advantageous engineering characteristics, including rich74

raw materials, low cost, strong compressive strength, and exceptional durability. Long spans and structures without75

intermediary columns both benefit from the use of deep beams. Deep beams are employed as girders to support the76

carriageway in bridges. Deep Beams are also employed as side walls in RCC water tanks and as connections for the77

pile caps in pile foundations. The shear span depth ratio is used to classify deep beams, which are ones with a greater78

depth than commonly utilised beams. The deep beams are defined differently by different codes. The beams having79

a depth greater with respect to its span are generally referred to as deep beams [35, 32, 34, 36, 33]. The ratio of80

effective span to overall depth when considered less than 3 the beam is called as deep as per Eurocode [33]. , As per81

ACI Code [32] shear design is specially done when clear span to effective depth ratio is less than 5 [32]. Leonhardt82

and Walter 1966 [52], experimentally proved that elastic design for such deep beam is not valid. Their investigation83

further highlighted the significance of accurate steel details in deep beams. The distribution of strain in a section of84

a deep beam is not linear and cannot be determined by elasticity theory. In general impact of shear in beam design85

is taken care of by longitudinal reinforcement provisions. However, In case of excess shear transverse reinforcement86

is separately designed [53]. For the case of deep beams such simplifying assumptions are not adequate and various87

approaches such as compression field theory, tension field theory etc. are proposed by various researchers based on88

which different country codes have proposed their procedures for shear design [35, 32, 34, 36, 33]. The amount of89

reinforcement to be used and concrete directly depends on accurate prediction of the shear capacity of a section [54].90

Machine learning (ML) is one of the widely accepted methods to tackle structural problems [55, 56, 57, 58, 59,91

60, 61, 62, 63, 64]. In Sandeep et al. [65], the authors thoroughly discuss the implementation of ML approaches for92
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predicting the shear strength of RC deep beams, covering in-depth procedures, various algorithms, and the basics of93

modeling, training, testing, underfitting, and overfitting. However, the authors show no real-time implementation and94

results. In Fu and Feng [66], the authors formulate ML algorithms to predict the shear strength of Corroded reinforced95

concrete beams using a gradient gradient-boosting regression tree. Authors use 158 shear tests for the corroded rein-96

forced concrete beam meanwhile showing how empirical models cannot take into account how corrosion influences97

calculations. The authors also calculate Time-dependent corrosion extent and lifetime shear strength prediction. How-98

ever, the issue of interpretability isn’t discussed. Similarly, the dataset taken into account is very small. In Chou et al.99

[67], the authors integrate the smart fly algorithm and least square support vector regression to build a hybrid model100

into a multi-source dataset sourced from North America, Australia & America. The hybrid model shows promising101

results of MAPE 18.95%. However, the authors show no correlations of features and any method for interpretability102

of models employed. In Naik and Kute [68], the authors have implemented an artificial neural net for predicting the103

shear strength of high-strength steel fibre-reinforced concrete deep beams. The validation method used is the residual104

sum of squares. Authors also establish a relationship between various features using ANN. The developed ANN8 es-105

tablishes the relations between various parameters affecting the complex behaviour of steel fibre-reinforced concrete106

deep beams. In Concha et al. [69], authors develop a hybrid Neuro-Swarn model to predict the shear strength of steel107

fibre-reinforced concrete deep beams. The model was developed using 116 experimental datasets. The analysis of108

the variance test showed prominent results. Authors also present various models used for shear strength calculation109

and prediction in conventional approaches Committee [32], Vamdewalle and Mortelmans [70], Al-Ta’an and Al-Feel110

[71], Sharma [72], Khuntia et al. [73], Cho and Kim [74]. However the experimental data size is small which may111

result in overfitting. In Pak et al. [75], the authors have proposed a novel approach named the transfer ensemble neural112

network (TENN) model to increase the performance of the model while predicting shear capacity on small datasets.113

In the models, authors have incorporated both ensemble learning and transfer learning in order to control the high114

variability of ML models. However the results are impressive, similarly the the issue of the black box approach and115

overfitting remains an open issue. In Almasabha et al. [76], the authors have worked on a new dataset of 102 instances116

of synthetic fibre-reinforced concrete (SyFRC) for reinforced concrete structures. Authors predict the shear strength117

of SyFRC beams without stirrups using ACI code and ML algorithms- LightGBM, XGBoost and Gene Expression.118

The study shows that, apart from the ACI equation, all considered models effectively predict the effects of the shear119

span-to-depth ratio. In Ly et al. [77], the authors have implemented real-code genetic algorithms and animal-based120

firefly algorithms in order to predict the shear strength of reinforced concrete deep beams. The dataset contains 463121

instances. Later in the study, the authors compare the obtained results with neural nets which shows promising results.122

In Olalusi and Awoyera [78], the authors implement Gaussian Process regression (GPR) and the Random Forest (RF)123
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to predict the shear resistance of steel fibre-reinforced concrete slender beams without stirrups. The results obtained124

during the study were compared with statistical and German guidelines. The authors also present the inconsistencies125

in prediction observed during the study. In Hossain et al. [79], the authors have formulated an ANN approach to pre-126

dict shear strength on the experimental database containing 173 steel fibre-reinforced concrete (SFRC) beams without127

stirrups. Additionally, the approach is tested with data from 36 experimental beams. The authors show how ANN is128

better when it comes to empirical equations for high and ultra-high strength of SFRC beams. However other possible129

techniques are not explored in this scenario. In Tapeh and Naser [1], the authors have conducted state of a state-of-130

the-art review for AI, ML & Deep Learning (DL) implementations in structural engineering, particularly earthquake,131

wind, and fire engineering. The authors introduce a wide range of techniques and their varied implications and benefits132

in the field of structural engineering. Authors cover more than 4000 scholarly works in order to identify best practices.133

The authors also cover shear strength prediction for RC deep beams, however, the scholarly works are limited to only134

two on the specific issue. Overall, the paper gives an overview of the last decades of how AI, ML & DL have shaped135

structural engineering. In Marie et al. [80], the authors present a framework predicting the shear strength of rein-136

forced concrete beam-column connections which is subjected to cyclic loading. The authors use classical prediction137

models such as K-nearest neighbour regression (KNN), Multivariate Adaptive Regression Splines (MARS), Ordinary138

least Squares (OLS), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and kernel regression with139

mixed data types (Kernel regression) which are implemented on a dataset of 98 instances. The authors show kernel140

regression predicted the joint shear strength with the highest accuracy. However, neither model interpretability nor141

feature importance is present. In Wakjira et al. [81] authors have implemented Existing predictive models which have142

shown unsatisfactory results. In response, the research proposed machine learning (ML) based models, considering143

all important variables, for predicting shear capacity. The analyses demonstrated successful predictions using the144

ML models, with extreme gradient boosting (XGBoost) showing the highest capability. Comparisons with existing145

models revealed the superiority of XGBoost in terms of accuracy, safety, and economic aspects. However, limita-146

tions concerning model interpretability were not addressed. Finally, reliability analysis was performed to calibrate147

resistance reduction factors, improving the confidence and applicability of the proposed model. Further research is148

needed to address this issue and explore additional avenues for enhancing ML techniques in structural engineering.149

In Liu et al. [82], the authors aimed to establish an accurate prediction model for precast concrete joints (PCJ) di-150

rect shear strength (DSS) using support vector regression (SVR), a machine learning algorithm. They assembled a151

comprehensive database of 304 test results with 23 input parameters and employed a novel correlation matrix-based152

feature selection method for improving the SVR model’s performance. The experimental validation showed that the153

SVR model outperformed traditional mechanical models in predicting DSS for PCJs. Additionally, the study provided154
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insights into the SVR model’s results using partial dependence and individual conditional expectation plots. Another155

study addressed the challenges in accurately predicting the shear strength of fiber-reinforced steel (FRS) due to the156

complex soil-fiber interaction mechanism. To tackle this, they compiled a high-quality database of triaxial and direct157

shear tests on FRS from 1983 to 2015, including crucial information on sand properties, fiber characteristics, soil-fiber158

interface properties, and stress parameters. This database served as a solid foundation for further analysis and future159

developments of improved mechanical models for predicting FRS shear strength.160

3. Methodology161

3.1. Ensemble Learning162

Ensemble learning is a machine learning technique that combines multiple models to improve the accuracy and163

robustness of predictions. Ensemble learning is a very advanced and significant machine learning technique within the164

academic domain. The core principle of this approach is centred on combining various foundational models or ”learn-165

ers” to generate a more powerful prediction model that exhibits improved accuracy and robustness. This technique166

is based on the long-standing belief that the combined knowledge and insights of a group frequently exceed those167

of an individual. Within the domain of machine learning, ensemble learning encompasses the use of this principle168

to algorithms, hence showcasing the potential for enhanced predictive results through the collaborative integration of169

several models.170

Ensemble learning, at its fundamental essence, aims to enhance predictive accuracy, strengthen generalisation171

skills, and reinforce model stability. The objective is to mitigate the inherent constraints of individual models through172

the use of variety and collaboration among the constituent learners. In the realm of academic discourse pertaining to173

ensemble learning, a number of crucial notions emerge as prominent.174

The first consideration pertains to the concept of diversity within the foundational models. Diversity plays a175

fundamental role in ensemble learning, which is accomplished through a range of strategies including the utilisation of176

diverse algorithms, the incorporation of distinct subsets of data, and the introduction of variances in hyperparameters177

throughout the training process. The underlying concept posits that the presence of diverse models results in distinct178

errors being made on various portions of the data. This collective diversity ultimately enhances the probability of179

making accurate predictions.180

Another crucial factor to consider is the consolidation of forecasts generated by individual models. Ensemble181

methods utilise many aggregation approaches, such as majority voting, weighted averaging, and stacking, each of182

which is based on distinct mathematical concepts and possesses distinct features.183
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The selection of base learners is a critical aspect in the ensemble learning procedure. The category of basic learners184

includes both elementary models, such as decision trees, as well as more intricate ones, such as neural networks. The185

choice of suitable base learners is contingent upon the distinct attributes of the data and the inherent nature of the186

problem under consideration.187

Ensemble learning comprises a range of ensemble forms, including bagging, boosting, and stacking, each char-188

acterised by unique methodologies for aggregating base models. The scholarly literature has exhaustively examined189

these many sorts of ensembles, providing insights into their individual merits and limitations.190

Ensemble learning offers a structured approach to effectively manage the bias-variance trade-off, a crucial consid-191

eration within the field of machine learning. Ensembles has the ability to address the issue of overfitting, characterised192

by large variance, by integrating various models. Simultaneously, ensembles are capable of capturing detailed patterns193

in the data, hence minimising bias.194

The topic of model interpretability is a subject of scholarly inquiry in the field of ensemble learning. Ensemble195

approaches frequently augment prediction performance, but concomitantly bring complexity to the overarching model.196

Scholars are currently engaged in the investigation of methods that aim to achieve a harmonious equilibrium between197

precision and interpretability of models, so guaranteeing that the knowledge obtained from the model remains lucid198

and comprehensible.199

Finally, scholarly discourse surrounding ensemble learning encompasses its practical implementation in various200

fields, such as banking, healthcare, image identification, and natural language processing. Researchers continually201

strive to illustrate the capacity of ensemble methodologies to offer more effective solutions to real-world situations,202

thus emphasising the practical significance of ensemble learning.203

The mathematical notation for ensemble learning involves defining a set of base models, and then combining them204

to produce a final prediction [83].205

Let X be the input data, and Y be the target variable we wish to predict. We define a set of N base models, denoted206

by M1, M2, ..., MN. Each base model takes X as input and produces a predicted output, denoted by Mi(X).207

The ensemble model then combines the predictions of the base models to produce a final prediction, denoted by208

F(X). There are many ways to combine the predictions of the base models, but one common approach is to use a209

weighted average is defined by equation (1).210

F(X) = w1 ∗ M1(X) + w2 ∗ M2(X) + ... + wN ∗ MN(X) (1)

where w1, w2, ..., wN are the weights assigned to each base model. The weights can be learned from the data or211
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set manually based on prior knowledge.212

Ensemble learning is a popular machine learning technique that combines multiple models to achieve better ac-213

curacy and generalization performance than using a single model. In the context of classification, ensemble learning214

involves constructing a set of base classifiers that make predictions on a given dataset , and then combining these215

predictions using a specified aggregation method to obtain the final classification result [19].216

3.1.1. Boosting217

Boosting is a common ensemble learning method that sequentially trains a set of weak classifiers on re-weighted218

versions of the training data, such that the misclassified samples in each iteration receive higher weights in the sub-219

sequent iterations. The final classification is then obtained by weighted voting of the individual classifier outputs220

[84, 85]. Mathematically, the boosting algorithm can be formulated as follows:221

Given a training dataset D = (xi, yi)n
i=1, where xi denotes the feature vector of the i-th sample and yi ∈ −1,+1222

represents its class label, and a set of weak classifiers hm(x), m = 1, . . . ,M, the boosting algorithm aims to learn a223

strong classifier H(x) as follows:224

1. Initialize sample weights wi = 1/n, i = 1, . . . , n.225

2. For each iteration m = 1, . . . ,M:226

• Train the m-th weak classifier hm(x) on the weighted training dataset Dm = (xi, yi,wi)n
i=1.227

• Compute the error rate ϵm =
∑n

i=1 wiI(yi , hm(xi)), where I(·) is the indicator function.228

• Compute the classifier weight αm =
1
2 log 1−ϵm

ϵm
.229

• Update the sample weights as wi ← wi exp(−αmyihm(xi)).230

3. Output the final classifier is defined by equation (2).231

H(x) = sign

 M∑
m=1

αmhm(x)

 (2)

3.1.2. Stacking232

Stacking is another popular ensemble learning technique that combines the outputs of multiple base classifiers233

using a higher-level meta-classifier, which is trained on the predictions of the base classifiers . Specifically, stacking234

consists of the following steps:235

1. Split the training dataset D into k disjoint subsets, or folds, D1, . . . ,Dk.236
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2. For each fold i = 1, . . . , k: Train the M base classifiers on the k − 1 folds other than Di. Obtain the predicted237

class probabilities for the samples in Di from each base classifier. Concatenate the predicted probabilities from238

all base classifiers to form a new feature vector for each sample in Di. Store the new feature vectors and the239

corresponding true class labels as a new training dataset D′i .240

3. Train a meta-classifier, such as logistic regression or SVM, on the augmented training dataset D′1, . . . ,D
′
k.241

4. Combine the base classifiers and the meta-classifier to form the final stacked classifier.242

Mathematically, the stacking algorithm can be represented as follows:243

Given a training dataset D = (xi, yi)n
i=1, where xi denotes the feature vector of the i-th sample and yi ∈ −1,+1244

represents its class label, and a set of base classifiers245

3.1.3. Bootstrap Aggregating Algorithm246

Bagging, short for Bootstrap Aggregating, is another popular ensemble learning method that trains multiple base247

classifiers on different bootstrap samples of the training data, and combines their outputs by majority voting to obtain248

the final classification. The bagging algorithm can be mathematically represented as follows:249

Given a training dataset D = (xi, yi)n
i=1, where xi denotes the feature vector of the i-th sample and yi ∈ −1,+1250

represents its class label, and a set of weak classifiers hm(x), m = 1, . . . ,M, the bagging algorithm aims to learn a251

strong classifier H(x) as follows:252

1. For each iteration m = 1, . . . ,M: Generate a bootstrap sample Dm of size n by randomly sampling n samples253

from Dwith replacement. Train the m-th weak classifier hm(x) on the bootstrap sample Dm.254

2. Output the final classifier is defined by equation (3).255

H(x) = sign

 M∑
m=1

hm(x)

 . (3)

3.2. Overview of the ML Models256

3.2.1. Artificial Neural Network257

An Artificial Neural Network is a computational model inspired by the structure and functionality of biological258

neural networks in the human brain. It is a type of machine learning algorithm designed to recognize patterns, solve259

complex problems, and make decisions based on input data [86].260

3.2.2. Decision Tree261

A decision tree is a non-linear predictive model and a popular supervised learning algorithm used for classification262

and regression tasks. It is a graphical representation of a set of rules and decisions based on input features that263
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recursively partition the data into subsets, leading to a hierarchical tree-like structure [87].264

3.2.3. Support Vector Machine265

The concept behind Support Vector Machine(SVM) is to find the best decision boundary (hyperplane) that sepa-266

rates the data points of different classes with the largest margin possible. The data points closest to the hyperplane,267

known as support vectors, play a crucial role in defining the optimal hyperplane. These support vectors are used to268

determine the margin and influence the overall performance of the SVM [88].269

3.2.4. Random Forest270

Random forest is a supervised learning algorithm. It can be used for both classification and regression. The271

algorithm works by building multiple decision trees (hence the ”forest”) and then selecting the tree that predicts the272

label for a new data point which is the best. The decision trees are built using a random subset of the features, and the273

predictions are made by averaging the predictions of all the trees [89, 90].274

3.2.5. Gradient Boosting275

Gradient boosting is a machine learning technique that can be used for both regression and classification problems.276

It creates a prediction model as an ensemble of weak prediction models, often decision trees. Like other boosting277

methods, it builds the model incrementally in a stage-wise fashion. It also allows for the optimization of an arbitrary278

differentiable loss function, which helps to generalize the model. [91].279

3.2.6. Adaptive Boosting280

The Adaptive Boosting Algorithm is a classification technique that is used to improve the accuracy of a model by281

combining a set of weak models. The algorithm adaptively changes the weights of the models in the ensemble so that282

the model with the highest error rate is given more weight. The algorithm then continues to iteratively train the model283

and update the weights until the desired accuracy is achieved [92].284

3.2.7. Extreme gradient Boosting(XGBoost)285

The extreme gradient boosting algorithm is a powerful machine learning algorithm that is often used for classifi-286

cation tasks. This algorithm is a modification of the gradient boosting algorithm that is designed to be more efficient287

and to better handle data with a large number of features. The extreme gradient boosting algorithm works by building288

a model in a stage-wise fashion. In each stage, a new tree is added to the model and the predictions of the new tree289

are combined with the predictions of the existing trees in the model. The trees are added in a way that minimizes the290

loss function of the model. The elaborated model is shown in the Figure 1 [93].291
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The extreme gradient boosting algorithm is very effective at handling data with a large number of features. This is292

because the algorithm can choose which features to use in each stage of the model. This allows the algorithm to focus293

on the most important features and to ignore the less important features.The extreme gradient boosting algorithm is294

also effective at handling data that is imbalanced. This is because the algorithm can learn from the mistakes that it295

makes on the minority class and use this knowledge to improve the predictions on the minority class. XGBoost is also296

used in classifying image [94], malware detection [95], predicting the death of patient during COVID-19 treatment297

[96] and detecting fraudulent activities [97].298

Figure 1: Evolution of XGBoost

3.2.8. Voting Regressor299

A voting regressor is an ensemble learning method for regression that works by combining the predictions of300

multiple individual regressors. The individual regressors can be any type of regression algorithm, such as linear301

regression, support vector regression, or decision tree regression. The predictions from the individual regressors are302

combined using a simple majority vote. The voting regressor is a powerful tool because it can reduce the variance of303

the predictions, making the predictions more robust and accurate. In addition, the voting regressor can help to avoid304

overfitting because it is less likely to overfit to the training data than a single regressor [98].305

4. Model Structure306

4.1. Data Collection307

The data set of RC beams is compiled from the published literature [99]. In this study, a total of 271 test data308

samples of RC beams from the literature were collected and used. These test data samples were related to RC deep309

beams of which 52 samples were from [100], 25 samples were from [101], 37 samples were from [102], 53 samples310

were from [103], 4 samples were from [104], 12 samples were from [105], 19 specimens are from [106]. 12 samples311

were from [107] and 39 samples were from [108] .312

The database includes a wide range of RC deep beams so that the model can generate data more effectively. The313

database contains four different types of deep beams, including beam without web reinforcements (WOR), beams314
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with horizontal web reinforcements (WHR), beams with vertical web reinforcements (WVR), and beams with both315

horizontal and vertical reinforcements (WHVR). Four distinct deep beam types— beams without web reinforcements,316

beams with horizontal web reinforcements, beams with vertical web reinforcements, and beams with both horizontal317

and vertical web reinforcements—are represented in the dataset used for this work. In the data set, this classification is318

marked with the help of parameters such as area/spacing of vertical web reinforcement and area/spacing of horizontal319

web reinforcement.320

Table 1: Statistical Information of parameters in deep beam database

The input variables for these beams are 16 design features that fall into four groups, (1) geometric dimensions:321

beam span l0, height h,effective height h0, width b, shear span a.; (2) longitudinal reinforcement information: rein-322

forcement ratio ρl and strength fyl; (3) web reinforcement information: horizontal reinforcement ratio ρh, spacing sh323

and strength fyh, vertical reinforcement ratio ρv, spacing sv and strength fyv; (4) concrete property: concrete strength324

f ′c . The output is the beam’s shear strength, denoted by Vu. The value ranges for these variables, as well as the325

statistical information (mean and standard derivation, etc.), are listed in Table 1. Meanwhile, Figure 2 also plots the326

distributions of the deep beam parameters frequencies.327
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Figure 2: Deep Beam Parameters Frequencies from the database [99]
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4.1.1. Limitations328

The dataset used for the analysis of shear strength in RC (Reinforced Concrete) deep beams poses certain limita-329

tions that need to be considered when implementing machine learning algorithms. Firstly, the dataset contains only330

271 samples, which might not be sufficient to fully capture the wide variability of RC deep beams in practice. A331

small sample size could lead to reduced statistical significance and limit the generalizability of the machine learning332

models.333

Secondly, the data is retrieved from old construction sites, potentially introducing bias and representativeness334

issues. Construction practices, materials, and design standards may have evolved, making the dataset less relevant to335

current scenarios. This temporal difference might affect the accuracy of the predictions.336

Thirdly, the limited sample size can result in a lack of diversity within the dataset. As a result, the machine337

learning algorithms might not adequately capture the variations in beam configurations, reinforcement details, and338

loading conditions, which are crucial factors influencing shear strength.339

To address some of these limitations, researchers should interpret the results with caution.340

4.2. Model Selection341

In this study, the authors have utilised Random forest, Adaptive boosting, Gradient Boosting, XGBoost, Support342

Vector Machine (SVM) and ANN. The authors have also implemented Voting Regressor over the top best performing343

algorithms to ensure better and generalised results. Figure 3 shows the step-by-step model approach taken in this344

study.345
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Figure 3: Step by step ensemble learning modelling approach with Interpretations
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4.3. Hyper-parameter Optimisation346

Once the data preprocessing is complete, the next task is to tune the hyperparameters in accordance with corre-347

lations and multiple other factors. In order to discover the hyperparameters, the grid search approach is paired with348

k-fold cross-validation (CV) as shown in Figure 4. The optimisation of model parameters is a crucial phase in ensem-349

ble learning, which involves making decisions on many factors such as the quantity of weak learners, learning rates,350

and maximum tree depths. In order to facilitate this procedure, a methodical methodology is employed, commencing351

with the determination of parameter boundaries derived from previous research and scholarly sources. This frequently352

involves constructing a parameter grid that encompasses potential values for every hyperparameter.353

The succeeding stage encompasses numerous iterations of model training, wherein different combinations of hy-354

perparameters inside the specified grid are examined. Nevertheless, the effectiveness and dependability of this proce-355

dure are contingent upon the manner in which we assess the performance of the model. K-fold cross-validation (CV)356

assumes a crucial function in this context.357

The K-fold cross-validation technique involves dividing the dataset into ’k’ folds of equal size. The model is358

subsequently trained ’k’ times, where each fold is utilised as the validation set once, while the remaining ’k-1’ folds359

are employed as training data. K-fold cross-validation (CV) is considered to be of utmost importance for various360

reasons.361

Firstly, the practise of evaluating the model on several data subsets helps mitigate bias in performance estimates.362

This approach enhances the robustness of the results and reduces their dependence on specific data divisions. Ad-363

ditionally, the utilisation of k-fold cross-validation (CV) offers a more accurate estimation of the variability in the364

performance of the model. This aids in evaluating the consistency and reliability of the model when applied to diverse365

subsets of data.366

Furthermore, the selection of the value ’k’ in k-fold cross-validation has an impact on the determination of the367

optimal hyperparameters. A higher value of ’k’ (for example, 10) provides a more extensive investigation of hyper-368

parameters, but at the expense of increased processing burdens. On the other hand, a reduced value of ’k’ (such as369

5) exhibits computational efficiency, although it may result in estimations that are comparatively less reliable. There-370

fore, the selection of ’k’ is determined by balancing the available computational resources with the desired level of371

reliability.372

The average of the ’k’ rounds of training and validation is commonly used to describe the overall model perfor-373

mance. This metric offers a thorough evaluation of the model’s ability to generalise across various subsets of data.374

It is generally advised to choose a value of ’k=10’ in most search scenarios, since this choice achieves a suitable375

compromise between computational feasibility and accurate performance estimation. However, the precise value of376
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Figure 4: K-fold cross-validation method [109]

the ’k’ parameter may differ based on factors like as the size of the dataset, the computational resources at hand, and377

the desired level of confidence in the obtained results.378

A better technique for dealing the bias of the training set’s random selection is the k-fold CV. A loop of k rounds379

is conducted, where the training set is divided into k equal-sized subsets. In each round, one subset is used to test the380

model and the remaining k-1 subsets are used to train the model. The Random forest algorithm involves optimizing381

three parameters, which include the total number of trees, the total number of features chosen randomly, and the382

maximum tree depth.383

For XGBoost, There are separate value ranges specified using grids for the number of trees, learning rate, and384

maximum tree depth. [0: 20: 600], [0.02, 0.05, 0.1, 0.2], and [2, 4, 8, 12, 14]. When the tree number is low, the385

R2 score rises fast with it, and once it reaches a specific value, the trend becomes progressively steady. The learning386

rate has a big impact on performance. In order to achieve the same R2 score for a training set, a model trained with a387

smaller learning rate will require more trees than a model trained with a larger learning rate. Increasing the number388

of trees, however, is not essential to improve the R2 score for a high learning rate. For instance, when the learning389

rate is between 0.1 and 0.2, the score drops as the number of trees exceeds between 100 & 200. For learning rates of390

0.02 and 0.05, however, the score does not peak until the number of trees exceeds 400, at about 0.8. The greatest tree391

depth of 8 and 16 yields scores that are quite close. Based on the analysis, the optimal values for the number of trees,392

learning rate, and maximum depth are 600, 0.1, and 10, respectively.393

4.4. Model Evaluation394

This study used four different statistical measurement parameters to assess the prediction accuracy of various395

ensemble learning models. These evaluation parameters compare the accumulated error in the predictions with the396
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actual observations. The statistical parameters used are the coefficient of determination (R-squared), mean absolute397

error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). These metrics pro-398

vide information about the accuracy and precision of the predictions made by the ensemble learning models. These399

mathematical formulations are defined as follows:400

• Coefficient of determination R2 [110]401

R2 = 1 −
∑m

i=1 (Pi − Ti)2∑m
i=1

(
Pi − T̄

)2 (4)

• Mean Absolute Error (MAE) [111]402

MAE =
∑m

i=1 |Pi − Ti|

m
(5)

• Root Mean Squared Error (RMSE) [112]403

RMS E =

√∑m
i=1 (Pi − Ti)2

m
(6)

• Mean Absolute Percentage Error (MAPE) [113]404

MAPE =
100%

m

m∑
i=1

∣∣∣∣∣Pi − Ti

Ti

∣∣∣∣∣ (7)

where Piand Ti are the predicted and tested values respectively; T̄ is the mean value of all the samples in the405

database.406

407

Clearly, the four metrics provide for a thorough assessment of the model’s performance. R2 , which is better if408

closer to 1 [114], assesses the linear relationship between predicted values and actual values. The first-order and409

second-order relative errors (measured by RMSE, MAE, and MAPE) between the predicted value and actual value410

are better when smaller [115].411
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5. Results & Discussion412

5.1. Comparison between ML Algorithms413

Traditional single learning techniques like decision trees (DT), support vector machines (SVM), and artificial414

neural networks (ANN) are contrasted with the performance of ensemble learning techniques. To ensure a fair com-415

parison, the hyper parameters of the single learning methods are also established through grid search and 10-fold416

cross-validation.417

The authors have compared 7 machine learning models on the testing dataset, i.e. 3 conventional ML models and418

4 ensemble learning model. Figure 5 compares the performance of the four ensemble models on the testing dataset.419

It is clear that compared to single learning models, ensemble learning models exhibit significant improvements. For420

instance, the worst ensemble learning random forest (RF) model has an R2 value of 0.906 whereas the greatest single421

learning DT model has an R-squared value of 0.887. As shown in Table 2 & Table 3, the root mean squared error422

(RMSE) in prediction of shear strength of single learning models ranges from 63 to 72 kN, but that of the four423

ensemble models is around 55 kN. The MAE of the single learning model is greater than 40 kN, whereas the MAE424

of the ensemble models is less than 38 kN. The mean absolute percentage error (MAPE) of the ANN model is higher425

than 18%, whereas that of the ensemble models is lower than 14%, and that of the XGBoost model is only about 10%.426

Table 2: Comparison of R2, MAE, RMSE & MAPE values between conventional ML models

Models Sets R2 MAE (kN) RMSE (kN) MAPE (%)
DT Training 0.958 22.912 36.416 8.43

Testing 0.887 42.559 63.145 14.41
SVM Training 0.980 11.916 24.672 3.64

Testing 0.852 40.260 72.020 11.76
ANN Training 0.984 16.526 22.612 6.51

Testing 0.856 52.050 71.111 18.13

As shown in Table 3, the root mean squared error (RMSE) in prediction of shear strength of ensemble learning427

models ranges from 47 to 57 kN. The MAE of the ensemble models is less than 38 kN. The mean absolute percentage428

error (MAPE) of the ensemble models is lower than 14%, and that of the XGBoost model is only about 10%. Over-429

all, the ensemble models and the XGBoost model in particular—perform better than conventional machine learning430

models.431
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Table 3: Comparison of R2, MAE, RMSE & MAPE values in ensemble learning models

Models Sets R2 MAE (kN) RMSE (kN) MAPE (%)
Random Forest Training 0.956 20.887 37.327 7.93

Testing 0.906 38.302 57.477 12.35
AdaBoost Training 0.970 25.889 30.594 12.38

Testing 0.919 36.659 53.274 13.16
GBRT Training 0.999 2.211 3.298 0.85

Testing 0.910 36.294 56.158 12.47
XGBoost Training 0.999 0.240 1.450 0.78

Testing 0.928 29.65 47.76 9.79

Figure 5: Comparison of R2, MAE, RMSE & MAPE values between Ensemble ML algorithms.
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Figure 6: Comparison between ML algorithms with Training and testing data.

The dataset is split in two parts i.e. 80% training set and 20% testing set. The performance of 4 ensemble432

learning models and voting regressor is shown in Figure 6, where the models are evaluated on the basis of testing433

dataset compared to given experimental data. The experimental data and the prediction are identical, as shown by the434

diagonal line (y = x). As can be observed from the scatter plots’ near proximity to the diagonal, all four ensemble435
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models generally obtained good results. In case of Voting Regressor, the regressor shows much generalised results436

compared to all other models.437

5.2. Overview of Mechanics Driven Models438

As opposed to normal beams, deep beams structural analysis is more complex, hence the assumption that the439

plane section will remain plane before and after bending is invalid because the strain is not distributed linearly. The440

pressure that is applied will have a greater impact on the stress than the strain. Shear deformation can also be ignored441

in normal beams, but it cannot be ignored in deep beams where shear is a major factor in failure. Larger depths, when442

applied in the conventional procedure, cause stress to not be linear in the elastic stage and prevent the ultimate stress443

from becoming the parabolic shape, which is another important factor in the shear failure of deep beams. European444

guideline states that a beam is considered to be deep if its effective span to overall depth ratio is less than 3.0 beam445

[33].446

Deep beams are members that are loaded on one face and supported on the other face in accordance with ACI-318447

clause 10.7.1 so that compression struts can form between the loads and the supports. In four times the overall member448

depth or less, or areas where loads are concentrated within a member’s depth of twice the support’s face [32].449

Five expressions for determining the shear strength of RC deep beams are taken from the design codes of China,450

British (CIRIA), the United States, Canada, and Europe. While the other three are determined based on the strut-and-451

tie model, the expression of China in Chinese code and British (CIRIA) are semi-empirical semi-analytical equation.452

The following is a list of the detailed expressions:453

• British (CIRIA Guide) [35]454

Vu,CIRIA,= C1

(
1 − 0.35

a
ho

)
ftbho +C2

n∑
1

A1
y1

ho
sin2 α

where C1 and C2 are constants depending on grade of concrete and steel; ft = 0.5√ fc ; A1 =Area of reinforcement;455

y1 = depth from the top of the beam to the point where the bar intersects the critical diagonal crack line α= angle456

between the bar considered and the critical diagonal crack.457

• US code: ACI 318 [32]458

Vu,ACI = 0.85βs f ′c bws sin θ

with459
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ws =
[
1.85wt cos θ +

(
lpE + lpP

)
sin θ

]
/2

θ = arctan
db

a
≥ 25◦

where βs is strut coefficient; θ is the angel between the strut and the longitudinal axis; ws is the width of the460

strut; wt is the height of the nodal region; lpE and lpP are the width of the top loading and bottom supporting plates,461

respectively; db is the distance between the top and bottom nodal region.462

• Chinese code: GB50010-2010 [34]463

Vu,GB =
1.75
λ + 1

ftbh0 +
l0/h − 2

3
fyv

Asv

sh
h0 +

5 − l0/h
6

fyh
Ash

sv
h0

where ft is the concrete tensile strength; λ = a/h0 is the shear spanto-depth ratio. Other variables are the same as464

defined in Table 1.465

• Canadian code: CSA A23.3-04 [36]466

Vu,CSA =
f ′c

0.8 + 170ϵ1
bws sin θ

with467

ws =
[
1.88wt cos θ +

(
lpE + lpP

)
sin θ

]
/2ϵ1 = ϵs + (ϵs + 0.002) cot2 θ

where ∈s= 0.75λ f ′c wtb/EsAs is the tensile strain of the tie.468

• European code: EN 1-1-1992:2004 [33]469

Vu,EU = 0.85βs f ′c bws sin θ

5.3. Comparison between Ml algorithms and mechanics-driven models470

In this section, a comparison of various statistical metrics with Ml algorithms and mechanics-driven models is471

drawn.472
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Table 4, compares the ratio of predicted shear strength to experimentally tested shear strength datasets mean, max-473

imum, minimum, standard deviation & covariance values from 5 codal provisions and the best-performing ensemble474

learning model i.e. XGBoost algorithm. In this case, if the standard deviation of the dataset is low, it might indicate475

that the data is consistent and reliable and that any predictions or conclusions drawn from the data are likely to be476

accurate. On the other hand, a high standard deviation would suggest that the data is more variable and less predictable477

and that any predictions or conclusions based on the data should be interpreted with caution.478

Table 4: Performance comparison between mechanics-driven models and best performing ensemble model

Models Predicted-to-test-ratio
Min. Max. St.D. Mean COV (%)

CIRIA 0.29 2.79 0.47 1.23 38.38
ACI 318 0.3 5.27 0.69 1.57 44.25

GB50010-2010 0.36 3.24 0.39 1.43 27.01
CSA 23.3-04 0.59 4.50 0.56 1.56 35.71

EC2 0.44 3.47 0.54 1.42 38.05
XGBoost 0.74 1.60 0.06 1.00 6.38

In general, a low standard deviation is desirable in many applications because it indicates that the data is well-479

behaved and can be easily analyzed and understood. XGBoost evolution is depicted in Figure 1. It is one of the most480

superior boosting ensemble learning models because it has both linear model solver and tree learning algorithms. As481

also shown in Table 4, predicted to test ratios dataset mean value is coming nearly about 1 and the standard deviation482

is also very low.483
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Figure 7: Predicted to test shear strength ratio for different RC beams by mechanics-driven models.

A comparison between predicted to test shear strength ratio plotted against various a/d ratios for mechanics-driven484

model results (Figure 7) vs. ensemble learning models (Figure 8) clearly depicts better prediction of shear strength485

on all types of RC deep beams with the XGBoost algorithm. In this study, the authors have also implemented voting486

regressor over top-performing boosting algorithms to get a better generalised view of ML models as shown in Figure487

26

26            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

8. Unlike black box ML algorithms, Voting regressors are prominent when it comes to transparency.488

Figure 8: Predicted to test shear strength ratio for different RC beams by XGBoost model and Voting Regressor model.

5.4. SHapley Additive exPlanations for XGBoost489

The key idea behind SHapley Additive exPlanations (SHAP) is to evaluate the contribution of each feature in a490

prediction by considering all possible combinations of features and how they affect the XGBoost model’s output. It491

calculates the average marginal contribution of each feature across all possible feature permutations. This process492

provides a more robust and balanced measure of feature importance compared to other methods that might suffer493

from issues like feature interdependence or lack of consistency Lundberg and Lee [37]. SHAP overcomes the major494

drawback of using ML models which is its black box nature.495

The authors have interpreted the SHAP values for all the features (l0, h , h0 ,b ,a ,ρl , fyl ,ρh , sh , fyh,ρv , sv, fyv , f ′c ,496

Vu) as shown in Figure 9. Concrete compressive strength f ′c affects the model the highest and horizontal reinforcement497

strength fyv affects the model the least. Concrete compressive strength f ′c , shear span a, width b & height h affects the498

models prediction majorly.499

In summary, SHAP values provide an interpretable way to understand how each feature affects the model’s output.500

They can help identify which features are driving the model predictions and the direction of their impact. Understand-501

ing these feature contributions can be valuable in gaining insights into the XGBoost model’s behavior and making502

data-driven decisions.503

5.5. Feature Importance Analysis504

Feature importance is important in machine learning models because it helps identify which features are most505

important for making predictions. This is useful for a number of reasons. First, understanding the relative importance506

of each feature can help build simpler, more interpretable models. By only using the most important features, it is507
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Figure 9: SHAP feature importance

possible to build a model that is easier to understand and explain to others. This can be especially useful in domains508

where interpretability is important, such as in healthcare or finance. Second, feature importance can help identify509

features that are redundant or irrelevant. These features can be removed from the model, which can improve its510

performance by reducing overfitting and increasing generalization. Third, understanding feature importance can help511

guide feature engineering efforts. By focusing on the most important features, it is possible to create new features that512

are more predictive and improve the performance of the model [116].513

Overall, feature importance is an important tool for understanding and improving machine learning models. It514

can help identify the most important features, remove redundant or irrelevant features, and build simpler, more inter-515

pretable models.516

The concrete compressive strength ( fc), standardised to a relative relevance of 100%, was discovered to be the most517

crucial factor for forecasting the shear strength of RC deep beams, as shown in Figure 10. Shear span (a) and vertical518

web reinforcement spacing, which have importance values between one-fourth and one-third of the concrete strength,519

are the second and third most crucial properties, respectively. This makes sense given that these characteristics have520

a direct impact on the shear mechanism of deep beams. Other characteristics, which account for around 18% of521

the relevance of shear strength, include section width, shear span-to-depth ratio, and horizontal web reinforcement522

spacing. Web and longitudinal reinforcement ratios are less important characteristics, with importance values of only523

about 10% of concrete strength. Other features were found to be of minor significance, with their combined influences524

being less than 10% of the most significant ones.525
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Figure 10: Feature Importance analysis result.

5.6. Conclusion526

This paper presents an ML technique-based approach with SHAP to predict the shear strength of RC deep beams.527

A total of 271 test data samples of RC beams were divided into four groups namely beams without web reinforcements528

(WOR), beams with horizontal web reinforcements (WHR), beams with vertical web reinforcements (WVR), and529

beams with both horizontal and vertical reinforcements (WHVR) from the literature were collected and used to train530

and test the models. The models were trained upon 16 parameters using 3 machine learning and 4 ensemble learning531

algorithms which were evaluated with each other on parameters coefficient of determination, mean absolute error, root532

mean squared error and mean absolute percentage error in which XGboost algorithms performed the best. XGboost533

algorithm was then compared with the mechanics-driven model of CIRIA, United States, Euro Code, Chinese code534

and Canadian code. According to the results, the following conclusion can be drawn:535

• The ML models provide a superior approach to predicting the shear strength of RC deep beams. The approach536

is robust in nature and can be replicated easily. The approach can be understood with ease rather than the537

numerical and theoretical derivations of mechanics-driven modelling. The only fundamental requirement is the538

dataset which can be easily collected and used for long-term structural health monitoring systems.539

• The XGBoost algorithm performance the best among ANN, Decision Tree, Support Vector Machine, Random540
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Forest, Gradient Boosting Algorithm and Adaptive boosting algorithm with a coefficient of determination of541

0.92 (testing), 0.99 (training) , mean absolute error of 29.65 (testing), 2.47 (training), root mean squared error542

of 47.76 (training), 1.45(testing) and mean absolute percentage error of 9.79(training), 0.78(testing) which are543

far superior to the mechanics driven models.544

• The hyperparameters for all the models are selected based on their performance in producing the best k-fold545

cross-validation results. The XGBoost model is found to perform optimally based on multiple iterations in546

learning rate, number of trees, and maximum depth, with the most suitable parameters being 600 trees, 0.1547

learning rate, and a maximum depth of 10.548

• The standard deviation, mean and covariance value of predicted to test ratio for XGBoost model were found549

0.06, 1.00 and 6.38 respectively in comparison to mechanics driven models British (CIRIA Guide)- 0.47, 1.23,550

38.38; United States code: 0.69, 1.57, 44.25; Chinese code: 0.39, 1.43, 27.01, Canadian code: 0.56, 1.56 35.71;551

and European code: 0.54, 1.42, 38.05. This validates the superiority of the ensemble learning approach, par-552

ticularly the XGBoost model, over traditional mechanics-driven models, highlighting its potential for accurate553

shear strength prediction.554

• SHapley Additive exPlanations is proposed for XGBoost algorithms results in order to interpret the inner work-555

ing of the model removing the black box nature of these ML algorithms and feature importance is shown to556

deduce the parameters which affects the shear strength of RC deep beams the most.557

• From SHapley Additive exPlanations and feature importance analysis, the Study concludes that compressive558

strength of concrete and geometry of the beam are the most influential parameters while properties of steel559

affects the least while predicting the shear strength of RC deep beams.560

5.7. Discussion561

This study deduces that the ensemble learning models specifically the XGBoost model is the best choice to predict562

the shear strength of RC deep beams that predicted to experimentally tested shear strength ratio data has the best563

mean and least standard deviation as compared to other codal methods. The XGBoost model’s predictions of the564

shear strength ratio for different RC beams indicate that the WHR prediction value is closest to the mean, followed by565

WVR, WHVR, and WOR, which also show proximity to the mean value in that order. In general the use of ensemble566

learning for shear strength prediction may lead to a reliance on black box algorithms that are difficult to interpret and567

understand. This could potentially pose challenges for engineers in comprehending the rationales behind ensemble568

predictions and evaluating their reliability. Consequently, a lack of trust in the ensemble’s predictions might impede569
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its widespread adoption within the construction industry. Meanwhile, the authors have utilized SHapley Additive570

Explanations (SHAP) to interpret the internal mechanisms of the model and identify correlations among parameters571

that influence the model predictions. This approach effectively addresses the challenges associated with black box572

algorithms.573

Predicting the shear strength of reinforced concrete (RC) deep beams using ensemble learning can have several574

implications and potential problems. One potential implication is that the use of ensemble learning for shear strength575

prediction could improve the accuracy of structural design in the construction industry. By combining the predictions576

of multiple models, ensemble learning can provide more reliable estimates of shear strength, which can help engineers577

design safer and more efficient structures. This could ultimately lead to a reduction in structural failures and improve578

the safety of buildings and other infrastructure [117].579

However, there are also potential problems associated with the use of ensemble learning for shear strength predic-580

tion. One potential problem is that the accuracy of ensemble learning models depends on the quality and diversity of581

the individual models that are combined. If the models used in the ensemble are not sufficiently diverse or are based582

on limited or biased data, the predictions of the ensemble may not be accurate. This could lead to incorrect design583

decisions and potentially unsafe structures [118, 119].584

When it comes to drawing direct comparisons between different studies in the literature on the prediction of shear585

strength in RC deep beams can be challenging for several reasons. One major obstacle is the variation in the datasets586

used across different studies. Each study may utilize different experimental data or numerical simulations, resulting in587

disparities in the dataset size, composition, and quality. This variation can significantly impact the performance and588

reliability of the predictive models. Moreover, the studies often involve a wide range of parameters affecting shear589

strength prediction, such as the concrete mix design, steel reinforcement, beam geometry, loading conditions, and590

boundary conditions. The differences in these parameters among studies can lead to divergent outcomes and hinder the591

establishment of a consistent comparison framework [67, 66, 78, 77, 65, 103, 120, 121, 122, 123, 124, 125, 126, 127].592

Furthermore, researchers adopt various methodologies to solve the problem of shear strength prediction in RC deep593

beams. These methods may include analytical approaches, experimental investigations, empirical equations, and594

machine learning techniques. Each method possesses its unique assumptions, limitations, and uncertainties, making595

it challenging to directly compare their outcomes. Given these variations in datasets, parameters, and methodologies,596

it becomes impractical to draw straightforward and reasonable comparisons between the literature.597

Overall, the use of ensemble learning for predicting the shear strength of RC deep beams has the potential to598

improve the accuracy and efficiency of structural design. However, it is important to carefully consider the potential599

problems and challenges associated with this approach and to address them in order to ensure that it is used safely and600

31

31            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

effectively in the future.601
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Abbreviation621

AI Artificial Intelligence

ML Machine learning

RC Reinforced concrete

ACI American Concrete Institute

DT Decision Tree

SVM Support Vector Machines

ANN Artificial Neural Networks

MAE Mean Absolute Error

RMSE Root Mean Squared Error

MAPE Mean Absolute Percentage Error

GBRT Gradient Boosting Regression Tree

RF Random Forest

SHAP Shapley Additive Explanations

SHM Structural Health Monitoring

EML Explainable Machine Learning

ACI American Concrete Institute

WOR Without Web Reinforcements

WHR Horizontal Web Reinforcement

WVR Vertical Web Reinforcements

WHVR Both Horizontal and Vertical Web Reinforcement

TENN Transfer Ensemble Neural Network

l0 beam span

h height

h0 effective height

b width

a span

ρl reinforcement ratio

fyl reinforcement strength

ρh horizontal reinforcement ratio

sh horizontal reinforcement spacing

fyh horizontal reinforcement strength

ρv vertical reinforcement ratio

sv vertical reinforcement spacing

fyv vertical reinforcement strength

f ′c Concrete Strength

Vu Shear Strength

622
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